Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 9.753
1.
J Sep Sci ; 47(9-10): e2300949, 2024 May.
Article En | MEDLINE | ID: mdl-38726739

Hydrophilic interaction liquid chromatography (HILIC) has been widely applied to challenging analysis in biomedical and pharmaceutical fields, bridging the gap between normal-phase high-performance liquid chromatography and reversed-phase high-performance liquid chromatography (RP-HPLC). This paper comprehensively explores the retention mechanisms of amitriptyline and its impurities A, B, C, D, F, and G on amide, amino, diol, and silica columns. Dual HILIC/RP-HPLC retention mechanisms were developed, and transitional points between HILIC and RP-HPLC mechanisms were calculated on amide, diol, and silica columns. Adsorption and partition contributions to overall retention mechanisms were evaluated using Python software in HILIC and RP-HPLC regions. The cation exchange mechanism dominates overall retention for ionized analytes in the silica column (R2 > 0.995), whereas the retention of ionized analytes increases with pH. Impacts of acetonitrile content, buffer ionic strength, and pH, along with their interactions on the retention of ionized analytes in the silica column, were determined using the chemometric approach. Acetonitrile content showed the most significant impact on the retention mechanisms. These findings highlight that a detailed investigation into retention mechanisms provides notable insights into factors influencing analyte retention and separation, promising valuable guidance for future analysis.


Amides , Amitriptyline , Hydrophobic and Hydrophilic Interactions , Silicon Dioxide , Silicon Dioxide/chemistry , Amitriptyline/analysis , Amitriptyline/chemistry , Amides/chemistry , Amides/analysis , Chromatography, High Pressure Liquid , Drug Contamination , Chromatography, Liquid/methods , Molecular Structure
2.
Chem Pharm Bull (Tokyo) ; 72(5): 432-453, 2024.
Article En | MEDLINE | ID: mdl-38692858

We have developed efficient synthetic reactions using enamines and enamides carrying oxygen atom substituent on nitrogen, such as N-alkoxyenamines, N,α-dialkoxyenamines, N-alkoxyanamides, and N-(benzoyloxy)enamides. The umpolung reaction by polarity inversion at the ß-position of N-alkoxyenamines afforded α-alkyl-, α-aryl-, α-alkenyl-, and α-heteroarylketones by using aluminum reagent as nucleophiles. Furthermore, one-pot umpolung α-phenylation of ketones has been also developed. We applied this method to umpolung reaction of N,α-dialkoxyenamine, generated from N-alkoxyamide to afford α-arylamides. The vicinal functionalization of N-alkoxyenamines has been achieved with the formation of two new carbon-carbon bonds by using an organo-aluminum reagent and subsequent allyl magnesium bromide or tributyltin cyanide. A sequential retro-ene arylation has been developed for the conversion of N-alkoxyenamides to the corresponding tert-alkylamines. The [3,3]-sigmatropic rearrangement of N-(benzoyloxy)enamides followed by arylation afforded cyclic ß-aryl-ß-amino alcohols bearing a tetrasubstituted carbon center. The resulting products were converted into the corresponding sterically congested cyclic ß-amino alcohols, as well as the dissociative anesthetic agent Tiletamine.


Amides , Amines , Amides/chemistry , Amides/chemical synthesis , Amines/chemistry , Amines/chemical synthesis , Molecular Structure , Nitrogen/chemistry , Oxygen/chemistry
3.
Protein Sci ; 33(6): e5013, 2024 Jun.
Article En | MEDLINE | ID: mdl-38808964

Many small globular proteins exist in only two states-the physiologically relevant folded state and an inactive unfolded state. The active state is stabilized by numerous weak attractive contacts, including hydrogen bonds, other polar interactions, and the hydrophobic effect. Knowledge of these interactions is key to understanding the fundamental equilibrium thermodynamics of protein folding and stability. We focus on one such interaction, that between amide and aromatic groups. We provide a statistically convincing case for quantitative, linear entropy-enthalpy compensation in forming aromatic-amide interactions using published model compound transfer-free energy data.


Entropy , Proteins , Proteins/chemistry , Proteins/metabolism , Thermodynamics , Protein Folding , Models, Molecular , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Amides/chemistry , Amides/metabolism
4.
Molecules ; 29(9)2024 May 04.
Article En | MEDLINE | ID: mdl-38731629

This work presents the design, synthesis and biological activity of novel N-substituted benzimidazole carboxamides bearing either a variable number of methoxy and/or hydroxy groups. The targeted carboxamides were designed to investigate the influence of the number of methoxy and/or hydroxy groups, the type of substituent placed on the N atom of the benzimidazole core and the type of substituent placed on the benzimidazole core on biological activity. The most promising derivatives with pronounced antiproliferative activity proved to be N-methyl-substituted derivatives with hydroxyl and methoxy groups at the phenyl ring and cyano groups on the benzimidazole nuclei with selective activity against the MCF-7 cell line (IC50 = 3.1 µM). In addition, the cyano-substituted derivatives 10 and 11 showed strong antiproliferative activity against the tested cells (IC50 = 1.2-5.3 µM). Several tested compounds showed significantly improved antioxidative activity in all three methods compared to standard BHT. In addition, the antioxidative activity of 9, 10, 32 and 36 in the cells generally confirmed their antioxidant ability demonstrated in vitro. However, their antiproliferative activity was not related to their ability to inhibit oxidative stress nor to their ability to induce it. Compound 8 with two hydroxy and one methoxy group on the phenyl ring showed the strongest antibacterial activity against the Gram-positive strain E. faecalis (MIC = 8 µM).


Antineoplastic Agents , Antioxidants , Benzimidazoles , Cell Proliferation , Drug Design , Benzimidazoles/chemistry , Benzimidazoles/pharmacology , Benzimidazoles/chemical synthesis , Humans , Cell Proliferation/drug effects , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , MCF-7 Cells , Antioxidants/pharmacology , Antioxidants/chemical synthesis , Antioxidants/chemistry , Structure-Activity Relationship , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Amides/chemistry , Amides/pharmacology , Amides/chemical synthesis , Molecular Structure , Microbial Sensitivity Tests , Oxidative Stress/drug effects
5.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article En | MEDLINE | ID: mdl-38731825

Aminopyrazoles represent interesting structures in medicinal chemistry, and several derivatives showed biological activity in different therapeutic areas. Previously reported 5-aminopyrazolyl acylhydrazones and amides showed relevant antioxidant and anti-inflammatory activities. To further extend the structure-activity relationships in this class of derivatives, a novel series of pyrazolyl acylhydrazones and amides was designed and prepared through a divergent approach. The novel compounds shared the phenylamino pyrazole nucleus that was differently decorated at positions 1, 3, and 4. The antiproliferative, antiaggregating, and antioxidant properties of the obtained derivatives 10-22 were evaluated in in vitro assays. Derivative 11a showed relevant antitumor properties against selected tumor cell lines (namely, HeLa, MCF7, SKOV3, and SKMEL28) with micromolar IC50 values. In the platelet assay, selected pyrazoles showed higher antioxidant and ROS formation inhibition activity than the reference drugs acetylsalicylic acid and N-acetylcysteine. Furthermore, in vitro radical scavenging screening confirmed the good antioxidant properties of acylhydrazone molecules. Overall, the collected data allowed us to extend the structure-activity relationships of the previously reported compounds and confirmed the pharmaceutical attractiveness of this class of aminopyrazole derivatives.


Amides , Antineoplastic Agents , Antioxidants , Cell Proliferation , Hydrazones , Pyrazoles , Humans , Pyrazoles/chemistry , Pyrazoles/pharmacology , Hydrazones/chemistry , Hydrazones/pharmacology , Hydrazones/chemical synthesis , Antioxidants/pharmacology , Antioxidants/chemistry , Structure-Activity Relationship , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Cell Proliferation/drug effects , Amides/chemistry , Amides/pharmacology , Cell Line, Tumor , Reactive Oxygen Species/metabolism , MCF-7 Cells , HeLa Cells
6.
Int J Mol Sci ; 25(9)2024 Apr 27.
Article En | MEDLINE | ID: mdl-38732008

Neuropathy affects 7-10% of the general population and is caused by a lesion or disease of the somatosensory system. The limitations of current therapies highlight the necessity of a new innovative approach to treating neuropathic pain (NP) based on the close correlation between oxidative stress, inflammatory process, and antioxidant action. The advantageous outcomes of a novel combination composed of Hop extract, Propolis, Ginkgo Biloba, Vitamin B, and palmitoylethanolamide (PEA) used as a treatment was evaluated in this study. To assess the absorption and biodistribution of the combination, its bioavailability was first examined in a 3D intestinal barrier model that replicated intestinal absorption. Further, a 3D nerve tissue model was developed to study the biological impacts of the combination during the essential pathways involved in NP. Our findings show that the combination could cross the intestinal barrier and reach the peripheral nervous system, where it modulates the oxidative stress, inflammation levels, and myelination mechanism (increased NRG, MPZ, ERB, and p75 levels) under Schwann cells damaging. This study proves the effectiveness of Ginkgo Biloba, Propolis, Hop extract, Vitamin B, and PEA in avoiding nerve damage and suggests a potential alternative nutraceutical treatment for NP and neuropathies.


Amides , Dietary Supplements , Ethanolamines , Neuralgia , Palmitic Acids , Plants, Medicinal , Ethanolamines/pharmacology , Palmitic Acids/pharmacology , Palmitic Acids/administration & dosage , Animals , Neuralgia/drug therapy , Amides/pharmacology , Amides/chemistry , Plants, Medicinal/chemistry , Polyphenols/pharmacology , Polyphenols/chemistry , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Plant Extracts/chemistry , Rats , Male , Antioxidants/pharmacology , Ginkgo biloba/chemistry , Humans
7.
J Agric Food Chem ; 72(20): 11531-11548, 2024 May 22.
Article En | MEDLINE | ID: mdl-38700894

Although recent evidence indicated significant phenol and alkylamide interaction in aqueous solutions, the gastrointestinal digestion influence of the combination remains unclear. This study aims to investigate phenol and alkylamide interaction during in vitro digestion, focusing on bioaccessibility and bioactivity, including α-glucosidase inhibition and cellular antioxidant activity. Additionally, the structural mechanism of phenol and alkylamide interaction during in vitro digestion was explored. The results indicated that the presence of phenols and alkylamides significantly increased or decreased their respective bioaccessibility, depending on the Zanthoxylum varieties. Furthermore, although antagonistic phenol/alkylamide interaction was evident during α-glucosidase inhibition, cellular oxidative stress alleviation, and antioxidant gene transcription upregulation, this effect weakened gradually as digestion progressed. Glycoside bond cleavage and the methylation of phenols as well as alkylamide isomerization and addition were observed during digestion, modifying the hydrogen bonding sites and interaction behavior. This study provided insights into the phenol/alkylamide interaction in the gastrointestinal tract.


Amides , Antioxidants , Digestion , Glycoside Hydrolase Inhibitors , Plant Extracts , Zanthoxylum , alpha-Glucosidases , Zanthoxylum/chemistry , Zanthoxylum/metabolism , Antioxidants/chemistry , Antioxidants/metabolism , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/metabolism , Glycoside Hydrolase Inhibitors/pharmacology , alpha-Glucosidases/metabolism , alpha-Glucosidases/chemistry , alpha-Glucosidases/genetics , Humans , Amides/chemistry , Amides/metabolism , Amides/pharmacology , Plant Extracts/chemistry , Plant Extracts/metabolism , Plant Extracts/pharmacology , Phenols/chemistry , Phenols/metabolism , Models, Biological , Phenol/metabolism , Phenol/chemistry
8.
J Am Chem Soc ; 146(20): 14213-14224, 2024 May 22.
Article En | MEDLINE | ID: mdl-38739765

The formation of an amide bond is an essential step in the synthesis of materials and drugs, and in the assembly of amino acids to form peptides. The mechanism of this reaction has been studied extensively, in particular to understand how it can be catalyzed, but a representation capable of explaining all the experimental data is still lacking. Numerical simulation should provide the necessary molecular description, but the solvent involvement poses a number of challenges. Here, we combine the efficiency and accuracy of neural network potential-based reactive molecular dynamics with the extensive and unbiased exploration of reaction pathways provided by transition path sampling. Using microsecond-scale simulations at the density functional theory level, we show that this method reveals the presence of two competing distinct mechanisms for peptide bond formation between alanine esters in aqueous solution. We describe how both reaction pathways, via a general base catalysis mechanism and via direct cleavage of the tetrahedral intermediate respectively, change with pH. This result contrasts with the conventional mechanism involving a single pathway in which only the barrier heights are affected by pH. We show that this new proposal involving two competing mechanisms is consistent with the experimental data, and we discuss the implications for peptide bond formation under prebiotic conditions and in the ribosome. Our work shows that integrating deep potential molecular dynamics with path sampling provides a powerful approach for exploring complex chemical mechanisms.


Molecular Dynamics Simulation , Peptides , Water , Water/chemistry , Peptides/chemistry , Density Functional Theory , Hydrogen-Ion Concentration , Alanine/chemistry , Amides/chemistry
9.
Bioorg Chem ; 147: 107415, 2024 Jun.
Article En | MEDLINE | ID: mdl-38701597

The tobacco mosaic virus coat protein (TMV-CP) is indispensable for the virus's replication, movement and transmission, as well as for the host plant's immune system to recognize it. It constitutes the outermost layer of the virus particle, and serves as an essential component of the virus structure. TMV-CP is essential for initiating and extending viral assembly, playing a crucial role in the self-assembly process of Tobacco Mosaic Virus (TMV). This research employed TMV-CP as a primary target for virtual screening, from which a library of 43,417 compounds was sourced and SH-05 was chosen as the lead compound. Consequently, a series of α-amide phosphate derivatives were designed and synthesized, exhibiting remarkable anti-TMV efficacy. The synthesized compounds were found to be beneficial in treating TMV, with compound 3g displaying a slightly better curative effect than Ningnanmycin (NNM) (EC50 = 304.54 µg/mL) at an EC50 of 291.9 µg/mL. Additionally, 3g exhibited comparable inactivation activity (EC50 = 63.2 µg/mL) to NNM (EC50 = 67.5 µg/mL) and similar protective activity (EC50 = 228.9 µg/mL) to NNM (EC50 = 219.7 µg/mL). Microscale thermal analysis revealed that the binding of 3g (Kd = 4.5 ± 1.9 µM) to TMV-CP showed the same level with NNM (Kd = 5.5 ± 2.6 µM). Results from transmission electron microscopy indicated that 3g could disrupt the structure of TMV virus particles. The toxicity prediction indicated that 3g was low toxicity. Molecular docking showed that 3g interacted with TMV-CP through hydrogen bond, attractive charge interaction and π-Cation interaction. This research provided a novel α-amide phosphate structure target TMV-CP, which may help the discovery of new anti-TMV agents in the future.


Antiviral Agents , Capsid Proteins , Phosphates , Tobacco Mosaic Virus , Tobacco Mosaic Virus/drug effects , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Phosphates/chemistry , Phosphates/pharmacology , Structure-Activity Relationship , Molecular Structure , Capsid Proteins/antagonists & inhibitors , Capsid Proteins/chemistry , Capsid Proteins/metabolism , Drug Design , Microbial Sensitivity Tests , Amides/chemistry , Amides/pharmacology , Amides/chemical synthesis , Dose-Response Relationship, Drug , Drug Discovery , Molecular Docking Simulation
10.
Biochemistry ; 63(10): 1322-1334, 2024 May 21.
Article En | MEDLINE | ID: mdl-38696389

Periplasmic solute-binding proteins (SBPs) are key ligand recognition components of bacterial ATP-binding cassette (ABC) transporters that allow bacteria to import nutrients and metabolic precursors from the environment. Periplasmic SBPs comprise a large and diverse family of proteins, of which only a small number have been empirically characterized. In this work, we identify a set of 610 unique uncharacterized proteins within the SBP_bac_5 family that are found in conserved operons comprising genes encoding (i) ABC transport systems and (ii) putative amidases from the FmdA_AmdA family. From these uncharacterized SBP_bac_5 proteins, we characterize a representative periplasmic SBP from Mesorhizobium sp. A09 (MeAmi_SBP) and show that MeAmi_SBP binds l-amino acid amides but not the corresponding l-amino acids. An X-ray crystal structure of MeAmi_SBP bound to l-serinamide highlights the residues that impart distinct specificity for l-amino acid amides and reveals a structural Ca2+ binding site within one of the lobes of the protein. We show that the residues involved in ligand and Ca2+ binding are conserved among the 610 SBPs from experimentally uncharacterized FmdA_AmdA amidase-associated ABC transporter systems, suggesting these homologous systems are also likely to be involved in the sensing, uptake, and metabolism of l-amino acid amides across many Gram-negative nitrogen-fixing soil bacteria. We propose that MeAmi_SBP is involved in the uptake of such solutes to supplement pathways such as the citric acid cycle and the glutamine synthetase-glutamate synthase pathway. This work expands our currently limited understanding of microbial interactions with l-amino acid amides and bacterial nitrogen utilization.


Amides , Periplasmic Binding Proteins , Amides/metabolism , Amides/chemistry , Crystallography, X-Ray , Periplasmic Binding Proteins/metabolism , Periplasmic Binding Proteins/chemistry , Periplasmic Binding Proteins/genetics , ATP-Binding Cassette Transporters/metabolism , ATP-Binding Cassette Transporters/chemistry , Amino Acids/metabolism , Mesorhizobium/metabolism , Bacterial Proteins/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Binding Sites , Models, Molecular , Amidohydrolases/metabolism , Amidohydrolases/chemistry , Calcium/metabolism , Protein Binding
11.
Eur J Med Chem ; 272: 116466, 2024 Jun 05.
Article En | MEDLINE | ID: mdl-38704938

P-glycoprotein (Pgp) modulators are promising agents for overcoming multidrug resistance (MDR) in cancer chemotherapy. In this study, via structural optimization of our lead compound S54 (nonsubstrate allosteric inhibitor of Pgp), 29 novel pyxinol amide derivatives bearing an aliphatic heterocycle were designed, synthesized, and screened for MDR reversal activity in KBV cells. Unlike S54, these active derivatives were shown to transport substrates of Pgp. The most potent derivative 4c exhibited promising MDR reversal activity (IC50 of paclitaxel = 8.80 ± 0.56 nM, reversal fold = 211.8), which was slightly better than that of third-generation Pgp modulator tariquidar (IC50 of paclitaxel = 9.02 ± 0.35 nM, reversal fold = 206.6). Moreover, the cytotoxicity of this derivative was 8-fold lower than that of tariquidar in human normal HK-2 cells. Furthermore, 4c blocked the efflux function of Pgp and displayed high selectivity for Pgp but had no effect on its expression and distribution. Molecular docking revealed that 4c bound preferentially to the drug-binding domain of Pgp. Overall, 4c is a promising lead compound for developing Pgp modulators.


ATP Binding Cassette Transporter, Subfamily B, Member 1 , Amides , Drug Resistance, Multiple , Drug Resistance, Neoplasm , Molecular Docking Simulation , Humans , Drug Resistance, Multiple/drug effects , Amides/chemistry , Amides/pharmacology , Amides/chemical synthesis , Structure-Activity Relationship , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Drug Resistance, Neoplasm/drug effects , Molecular Structure , Dose-Response Relationship, Drug , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Drug Screening Assays, Antitumor , Cell Proliferation/drug effects
12.
J Agric Food Chem ; 72(21): 12100-12118, 2024 May 29.
Article En | MEDLINE | ID: mdl-38748649

This study aimed to investigate the chemical components and potential health benefits of the fruits of Cannabis sativa L. Fourteen new phenylpropanamides designated as cannabisin I-XIV (1-14) and 40 known analogs were isolated and characterized via nuclear magnetic resonance spectroscopy, high-resolution electrospray ionization mass spectrometry, and electronic circular dichroism. In vitro bioassay using H2O2-induced PC12 cell damage models demonstrated that hempseeds extract and compounds 1, 3, 15, 26, 30, 36, 41, and 48 exhibited neuroprotective properties. 3,3'-Demethylgrossamide (30) displayed encouraging protection activity, which was further investigated to relieve the oxidative stress and apoptosis of PC12 cells treated with H2O2. The isolation and characterization of these neuroprotective phenylpropanamides from the fruits of C. sativa provide insights into its health-promoting properties as a healthy food and herbal medicine for preventing and treating neurodegenerative diseases, especially Alzheimer's disease.


Cannabis , Fruit , Neuroprotective Agents , Plant Extracts , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Rats , PC12 Cells , Animals , Fruit/chemistry , Cannabis/chemistry , Plant Extracts/chemistry , Plant Extracts/pharmacology , Molecular Structure , Oxidative Stress/drug effects , Apoptosis/drug effects , Amides/chemistry , Amides/pharmacology , Hydrogen Peroxide , Humans
13.
Langmuir ; 40(21): 11098-11105, 2024 May 28.
Article En | MEDLINE | ID: mdl-38739904

Disulfide bonding has attracted intense interest in the tumor intracellular microenvironment-activated drug delivery systems (DDSs) in the last decades. Although various molecular structures of redox-responsive disulfide-containing DDSs have been developed, no investigation was reported on the effect of aggregation structures. Here, the effect of aggregation structures on pH/GSH dual-triggered drug release was investigated with the simplest pH/GSH dual-triggered doxorubicin-based drug self-delivery system (DSDS), the disulfide/α-amide-bridged doxorubicin dimeric prodrug (DDOX), as a model. By fast precipitation or slow self-assembly, DDOX nanoparticles were obtained. With similar diameters, they exhibited different pH/GSH dual-triggered drug releases, demonstrating the effect of aggregation structures. The π-π stacking in different degrees was revealed by the UV-vis, fluorescence, and BET analysis of the DDOX nanoparticles. The effect of the π-π stacking between the dimeric prodrug and its activated products on drug release was also explored with the molecular simulation approach. The finding opens new ideas in the design of high-performance DDSs for future precise tumor treatment.


Disulfides , Doxorubicin , Drug Liberation , Glutathione , Prodrugs , Prodrugs/chemistry , Prodrugs/pharmacology , Doxorubicin/chemistry , Doxorubicin/pharmacology , Hydrogen-Ion Concentration , Disulfides/chemistry , Glutathione/chemistry , Amides/chemistry , Nanoparticles/chemistry , Dimerization , Drug Carriers/chemistry
14.
J Med Life ; 17(1): 87-98, 2024 Jan.
Article En | MEDLINE | ID: mdl-38737655

This study aimed to identify novel Glyoxalase-I (Glo-I) inhibitors with potential anticancer properties, focusing on anthraquinone amide-based derivatives. We synthesized a series of these derivatives and conducted in silico docking studies to predict their binding interactions with Glo-I. In vitro assessments were performed to evaluate the anti-Glo-I activity of the synthesized compounds. A comprehensive structure-activity relationship (SAR) analysis identified key features responsible for specific binding affinities of anthraquinone amide-based derivatives to Glo-I. Additionally, a 100 ns molecular dynamics simulation assessed the stability of the most potent compound compared to a co-crystallized ligand. Compound MQ3 demonstrated a remarkable inhibitory effect against Glo-I, with an IC50 concentration of 1.45 µM. The inhibitory potency of MQ3 may be attributed to the catechol ring, amide functional group, and anthraquinone moiety, collectively contributing to a strong binding affinity with Glo-I. Anthraquinone amide-based derivatives exhibit substantial potential as Glo-I inhibitors with prospective anticancer activity. The exceptional inhibitory efficacy of compound MQ3 indicates its potential as an effective anticancer agent. These findings underscore the significance of anthraquinone amide-based derivatives as a novel class of compounds for cancer therapy, supporting further research and advancements in targeting the Glo-I enzyme to combat cancer.


Amides , Anthraquinones , Enzyme Inhibitors , Lactoylglutathione Lyase , Molecular Docking Simulation , Anthraquinones/pharmacology , Anthraquinones/chemistry , Humans , Amides/chemistry , Amides/pharmacology , Lactoylglutathione Lyase/antagonists & inhibitors , Lactoylglutathione Lyase/metabolism , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/chemical synthesis , Structure-Activity Relationship , Molecular Dynamics Simulation , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry
15.
J Phys Chem Lett ; 15(18): 4933-4939, 2024 May 09.
Article En | MEDLINE | ID: mdl-38686860

The vibrational coupling between protein backbone modes and the role of water interactions are important topics in biomolecular spectroscopy. Our work reports the first study of the coupling between amide I and amide A modes within peptides and proteins with secondary structure and water contacts. We use two-color two-dimensional infrared (2D IR) spectroscopy and observe cross peaks between amide I and amide A modes. In experiments with peptides with different secondary structures and side chains, we observe that the spectra are sensitive to secondary structure. Water interactions affect the cross peaks, which may be useful as probes for the accessibility of protein sites to hydration water. Moving to two-color 2D IR spectra of proteins, the data demonstrate that the cross peaks integrate the sensitivities of both amide I and amide A spectra and that a two-color detection scheme may be a promising tool for probing secondary structures in proteins.


Amides , Proteins , Spectrophotometry, Infrared , Water , Spectrophotometry, Infrared/methods , Water/chemistry , Proteins/chemistry , Amides/chemistry , Protein Structure, Secondary , Peptides/chemistry
16.
Fitoterapia ; 175: 105951, 2024 Jun.
Article En | MEDLINE | ID: mdl-38583637

Four undescribed amide alkaloids hongkongensines A-C and 1-(1-oxo-6-hydroxy-2E,4E-dodecadienyl)-piperidine, five known amide alkaloids, and three known neolignans were isolated from the aerial part of Piper hongkongense. The planar structures of these compounds were determined by detailed analyses of HR-ESI-MS and NMR data. The absolute configurations of hongkongensines A-C were elucidated by single-crystal X-ray diffraction analysis and ECD calculations. Moreover, the inhibitory activities of PCSK9 expression in vitro for all compounds were assessed by PCSK9 AlphaLISA screening. Kadsurenone (10) displayed a significant inhibitory activity at 5 µM with an inhibition rate of 51.98%, compared with 55.55% of berberine (BBR 5 µM).


Alkaloids , Lignans , PCSK9 Inhibitors , Phytochemicals , Piper , Plant Components, Aerial , Piper/chemistry , Molecular Structure , Alkaloids/pharmacology , Alkaloids/isolation & purification , Alkaloids/chemistry , Lignans/pharmacology , Lignans/isolation & purification , Humans , Phytochemicals/pharmacology , Phytochemicals/isolation & purification , Plant Components, Aerial/chemistry , Amides/pharmacology , Amides/isolation & purification , Amides/chemistry , Proprotein Convertase 9/metabolism , China
17.
BMC Pharmacol Toxicol ; 25(1): 31, 2024 Apr 29.
Article En | MEDLINE | ID: mdl-38685129

In the current work, favipiravir (an antiviral drug) loaded pH-responsive polymeric hydrogels were developed by the free redical polymerization technique. Box-Behnken design method via Design Expert version 11 was employed to furnish the composition of all hydrogel formulations. Here, polyethylene glycol (PEG) has been utilized as a polymer, acrylic acid (AA) as a monomer, and potassium persulfate (KPS) and methylene-bisacrylamide (MBA) as initiator and cross-linker, respectively. All networks were evaluated for in-vitro drug release (%), sol-gel fraction (%), swelling studies (%), porosity (%), percentage entrapment efficiency, and chemical compatibilities. According to findings, the swelling was pH sensitive and was shown to be greatest at a pH of 6.8 (2500%). The optimum gel fraction offered was 97.8%. A sufficient porosity allows the hydrogel to load a substantial amount of favipiravir despite its hydrophobic behavior. Hydrogels exhibited maximum entrapment efficiency of favipiravir upto 98%. The in-vitro release studies of drug-formulated hydrogel revealed that the drug release from hydrogel was between 85 to 110% within 24 h. Drug-release kinetic results showed that the Korsmeyer Peppas model was followed by most of the developed formulations based on the R2 value. In conclusion, the hydrogel-based technology proved to be an excellent option for creating the sustained-release dosage form of the antiviral drug favipiravir.


Amides , Antiviral Agents , Delayed-Action Preparations , Drug Liberation , Hydrogels , Pyrazines , Delayed-Action Preparations/chemistry , Hydrogels/chemistry , Amides/chemistry , Amides/administration & dosage , Hydrogen-Ion Concentration , Antiviral Agents/chemistry , Antiviral Agents/administration & dosage , Antiviral Agents/pharmacokinetics , Pyrazines/chemistry , Pyrazines/administration & dosage , Pyrazines/pharmacokinetics , Polyethylene Glycols/chemistry , Cross-Linking Reagents/chemistry
18.
Nat Commun ; 15(1): 3658, 2024 Apr 30.
Article En | MEDLINE | ID: mdl-38688913

Abberent protein-protein interactions potentiate many diseases and one example is the toxic, self-assembly of α-Synuclein in the dopaminergic neurons of patients with Parkinson's disease; therefore, a potential therapeutic strategy is the small molecule modulation of α-Synuclein aggregation. In this work, we develop an Oligopyridylamide based 2-dimensional Fragment-Assisted Structure-based Technique to identify antagonists of α-Synuclein aggregation. The technique utilizes a fragment-based screening of an extensive array of non-proteinogenic side chains in Oligopyridylamides, leading to the identification of NS132 as an antagonist of the multiple facets of α-Synuclein aggregation. We further identify a more cell permeable analog (NS163) without sacrificing activity. Oligopyridylamides rescue α-Synuclein aggregation mediated Parkinson's disease phenotypes in dopaminergic neurons in early and post disease Caenorhabditis elegans models. We forsee tremendous potential in our technique to identify lead therapeutics for Parkinson's disease and other diseases as it is expandable to other oligoamide scaffolds and a larger array of side chains.


Caenorhabditis elegans , Dopaminergic Neurons , Parkinson Disease , alpha-Synuclein , alpha-Synuclein/metabolism , alpha-Synuclein/genetics , Caenorhabditis elegans/metabolism , Parkinson Disease/metabolism , Parkinson Disease/drug therapy , Parkinson Disease/pathology , Animals , Humans , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/drug effects , Dopaminergic Neurons/pathology , Phenotype , Protein Aggregates/drug effects , Disease Models, Animal , Protein Aggregation, Pathological/metabolism , Protein Aggregation, Pathological/drug therapy , Pyridines/pharmacology , Pyridines/chemistry , Amides/pharmacology , Amides/chemistry
19.
Org Biomol Chem ; 22(17): 3477-3489, 2024 05 01.
Article En | MEDLINE | ID: mdl-38602033

Selective degradation of disease-causing proteins using proteolysis targeting chimeras (PROTACs) has gained great attention, thanks to its several advantages over traditional therapeutic modalities. Despite the advances made so far, the structural chemical complexity of PROTACs poses challenges in their synthetic approaches. PROTACs are typically prepared through a convergent approach, first synthesizing two fragments separately (target protein and E3 ligase ligands) and then coupling them to produce a fully assembled PROTAC. The amidation reaction represents the most common coupling exploited in PROTACs synthesis. Unfortunately, the overall isolated yields of such synthetic procedures are usually low due to one or more purification steps to obtain the final PROTAC with acceptable purity. In this work, we focused our attention on the optimization of the final amidation step for the synthesis of an anti-SARS-CoV-2 PROTAC by investigating different amidation coupling reagents and a range of alternative solvents, including ionic liquids (ILs). Among the ILs screened, [OMIM][ClO4] emerged as a successful replacement for the commonly used DMF within the HATU-mediated amidation reaction, thus allowing the synthesis of the target PROTAC under mild and sustainable conditions in very high isolated yields. With the optimised conditions in hand, we explored the scalability of the synthetic approach and the substrate scope of the reaction by employing different E3 ligase ligand (VHL and CRBN)-based intermediates containing linkers of different lengths and compositions or by using different target protein ligands. Interestingly, in all cases, we obtained high isolated yields and complete conversion in short reaction times.


Ionic Liquids , Proteolysis , Ionic Liquids/chemistry , Ionic Liquids/chemical synthesis , Ubiquitin-Protein Ligases/metabolism , SARS-CoV-2 , Amides/chemistry , Amides/chemical synthesis , Humans , Ligands , Molecular Structure , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Proteolysis Targeting Chimera
20.
J Am Chem Soc ; 146(17): 11648-11656, 2024 May 01.
Article En | MEDLINE | ID: mdl-38629317

Imidazolones represent an important class of heterocycles present in a wide range of pharmaceuticals, metabolites, and bioactive natural products and serve as the active chromophore in green fluorescent protein. Recently, imidazolones have received attention for their ability to act as a nonaromatic amide bond bioisotere which improves pharmacological properties. Herein, we present a tandem amidine installation and cyclization with an adjacent ester to yield (4H)-imidazolone products. Using amino acid building blocks, we can access the first examples of α-chiral imidazolones that have been previously inaccessible. Additionally, our method is amenable to on-resin installation which can be seamlessly integrated into existing solid-phase peptide synthesis protocols. Finally, we show that peptide imidazolones are potent cis-amide bond surrogates that preorganize linear peptides for head-to-tail macrocyclization. This work represents the first general approach to the backbone and side-chain insertion of imidazolone bioisosteres at various positions in linear and cyclic peptides.


Amides , Imidazoles , Peptides , Imidazoles/chemistry , Imidazoles/chemical synthesis , Peptides/chemistry , Peptides/chemical synthesis , Amides/chemistry , Cyclization , Stereoisomerism , Molecular Structure
...